17 research outputs found

    Protein-Ligand Scoring with Convolutional Neural Networks

    Full text link
    Computational approaches to drug discovery can reduce the time and cost associated with experimental assays and enable the screening of novel chemotypes. Structure-based drug design methods rely on scoring functions to rank and predict binding affinities and poses. The ever-expanding amount of protein-ligand binding and structural data enables the use of deep machine learning techniques for protein-ligand scoring. We describe convolutional neural network (CNN) scoring functions that take as input a comprehensive 3D representation of a protein-ligand interaction. A CNN scoring function automatically learns the key features of protein-ligand interactions that correlate with binding. We train and optimize our CNN scoring functions to discriminate between correct and incorrect binding poses and known binders and non-binders. We find that our CNN scoring function outperforms the AutoDock Vina scoring function when ranking poses both for pose prediction and virtual screening

    The N-ary in the Coal Mine: Avoiding Mixture Model Failure with Proper Validation

    Full text link
    Modeling the properties of chemical mixtures is a difficult but important part of any modeling process intended to be applicable to the often messy and impure phenomena of everyday life, including food and environmental safety, healthcare, etc. Part of this difficulty stems from the increased complexity of designing suitable model validation schemes for mixture data, a fact which has been elucidated in previous work only in the case of binary mixture models. We extend these previously defined validation strategies for QSAR modeling of binary mixtures to the more complex case of general, NN-ary mixtures and argue that these strategies are applicable to many modeling tasks beyond simple chemical mixtures. Additionally, we propose a method of establishing a baseline model performance for each mixture dataset to be in used in model selection comparisons. This baseline is intended to account for the statistical dependence generically present between the properties of mixtures that share constituents. We contend that without such a baseline, estimates of model performance can be dramatically overestimated, and we demonstrate this with multiple case studies using real and simulated data.Comment: 22 pages, 1 figur

    Supplementary_Text_v1

    No full text
    Supplementary Tex

    Suppl_fig_tab_legends_v1

    No full text
    Supplementary Figure and Table legend
    corecore